Search results for "Fractional calculus"

showing 10 items of 128 documents

Multiple Solutions for Fractional Boundary Value Problems

2018

Variational methods and critical point theorems are used to discuss existence and multiplicity of solutions for fractional boundary value problem where Riemann–Liouville fractional derivatives and Caputo fractional derivatives are used. Some conditions to determinate nonnegative solutions are presented. An example is given to illustrate our results.

010102 general mathematicsMathematical analysisMultiple solutionVariational methodMultiplicity (mathematics)01 natural sciencesCritical point (mathematics)Fractional differential equationFractional calculus010101 applied mathematicsMathematics (all)Pharmacology (medical)Boundary value problem0101 mathematicsCritical point theoremMathematics
researchProduct

Vertical versus horizontal Sobolev spaces

2020

Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev sp…

010102 general mathematicsMetric Geometry (math.MG)Function (mathematics)Lipschitz continuity01 natural sciencesFunctional Analysis (math.FA)Fractional calculusSobolev spaceCombinatoricsMathematics - Functional AnalysisMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesVertical directionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupOrder (group theory)010307 mathematical physics0101 mathematics46E35 (Primary) 26A33 35R03 43A15 (Secondary)AnalysisMathematics
researchProduct

Modelling infiltration by means of a nonlinear fractional diffusion model

2006

The classical Richards equation describes infiltration into porous soil as a nonlinear diffusion process. Recent experiments have suggested that this process exhibits anomalous scaling behaviour. These observations suggest generalizing the classical Richards equation by introducing fractional time derivatives. The resulting fractional Richards equation with appropriate initial and boundary values is solved numerically in this paper. The numerical code is tested against analytical solutions in the linear case. Saturation profiles are calculated for the fully nonlinear fractional Richards equation. Isochrones and isosaturation curves are given. The cumulative moisture intake is found as a fun…

Acoustics and UltrasonicsMathematical analysisCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsFractional calculusInfiltration (hydrology)Nonlinear systemFractional diffusionRichards equationPorositySaturation (chemistry)ScalingMathematicsJournal of Physics D: Applied Physics
researchProduct

Suitable domains to define fractional integrals of Weyl via fractional powers of operators

2011

AlgebraGeneral MathematicsFractional calculusMathematicsStudia Mathematica
researchProduct

Fractional-order poromechanics for a fully saturated biological tissue: Biomechanics of meniscus

2023

Biomechanics of biological fibrous tissues as the meniscus are strongly influenced by past histories of strains involving the so-called material hereditariness. In this paper, a three-axial model of linear hereditariness that makes use of fractional-order calculus is used to describe the constitutive behavior of the tissue. Fluid flow across meniscus' pores is modeled in this paper with Darcy relation yielding a novel model of fractional-order poromechanics, describing the evolution of the diffusion phenomenon in the meniscus. A numerical application involving an 1D confined compression test is reported to show the effect of the material hereditariness on the pressure drop evolution.

Applied MathematicsPoromechanicMODELSfractional-order hereditarinessBiomedical EngineeringporomechanicsRELAXATIONfractional calculusCALCULUSDIFFUSIONpore pressureComputational Theory and MathematicsmeniscusModeling and SimulationHEREDITARINESSmeniscuSettore ICAR/08 - Scienza Delle CostruzioniMolecular BiologyLAWSoftware
researchProduct

Power-Laws hereditariness of biomimetic ceramics for cranioplasty neurosurgery

2019

Abstract We discuss the hereditary behavior of hydroxyapatite-based composites used for cranioplasty surgery in the context of material isotropy. We classify mixtures of collagen and hydroxiapatite composites as biomimetic ceramic composites with hereditary properties modeled by fractional-order calculus. We assume isotropy of the biomimetic ceramic is assumed and provide thermodynamic of restrictions for the material parameters. We exploit the proposed formulation of the fractional-order isotropic hereditariness further by means of a novel mechanical hierarchy corresponding exactly to the three-dimensional fractional-order constitutive model introduced.

Biomimetic materialsMaterials scienceApplied MathematicsMechanical Engineeringmedicine.medical_treatmentPhysics::Medical PhysicsConstitutive equationIsotropyContext (language use)02 engineering and technology021001 nanoscience & nanotechnologyPower lawCranioplastyBiomimetic materials Cranioplasty Fractional calculus Isotropic hereditariness Power-law hereditariness020303 mechanical engineering & transports0203 mechanical engineeringMechanics of Materialsvisual_artvisual_art.visual_art_mediummedicineCeramicComposite material0210 nano-technologySettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Variational Aspects of the Physically-Based Approach to 3D Non-Local Continuum Mechanics

2010

This paper deals with the generalization to three-dimensional elasticity of the physically-based approach to non-local mechanics, recently proposed by the authors in one-dimensional case. The proposed model assumes that the equilibrium of a volume element is attained by contact forces between adjacent elements and by long-range central forces exerted by non-adjacent elements. Specifically, the long-range forces are modeled as central body forces depending on the relative displacements between the centroids of the volume elements, measured along the line connecting the centroids. Furthermore, the long-range forces are assumed to be proportional to a proper, material-dependent, distance-decay…

Body forceMaterials scienceLong-Range InteractionContinuum mechanicsMechanical EngineeringElasticity (physics)Condensed Matter PhysicsContact forceClassical mechanicsCentral forceMechanics of MaterialsElastic Potential EnergyBounded functionFractional CalculusGeneral Materials ScienceBoundary value problemVolume elementNon-Local ElasticitySettore ICAR/08 - Scienza Delle CostruzioniMaterials Science Forum
researchProduct

A generalized model of elastic foundation based on long-range interactions: Integral and fractional model

2009

The common models of elastic foundations are provided by supposing that they are composed by elastic columns with some interactions between them, such as contact forces that yield a differential equation involving gradients of the displacement field. In this paper, a new model of elastic foundation is proposed introducing into the constitutive equation of the foundation body forces depending on the relative vertical displacements and on a distance-decaying function ruling the amount of interactions. Different choices of the distance-decaying function correspond to different kind of interactions and foundation behavior. The use of an exponential distance-decaying function yields an integro-d…

Body forceNon-local elasticityElastic foundationsDifferential equationConstitutive equationFractional calculuElastic foundationMaterials Science(all)Long-range forcesLong-range forceModelling and SimulationGeneral Materials ScienceMathematicsApplied MathematicsMechanical EngineeringMathematical analysisFractional calculusFunction (mathematics)Condensed Matter PhysicsIntegral equationFractional calculusExponential functionMejier-G functionsGradient modelsMechanics of MaterialsModeling and SimulationDisplacement fieldGradient modelSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Threefold Introduction to Fractional Derivatives

2008

CalculusStochastic theoryMathematicsFractional calculus
researchProduct

On the use of fractional calculus for the probabilistic characterization of random variables

2009

In this paper, the classical problem of the probabilistic characterization of a random variable is re-examined. A random variable is usually described by the probability density function (PDF) or by its Fourier transform, namely the characteristic function (CF). The CF can be further expressed by a Taylor series involving the moments of the random variable. However, in some circumstances, the moments do not exist and the Taylor expansion of the CF is useless. This happens for example in the case of $\alpha$--stable random variables. Here, the problem of representing the CF or the PDF of random variables (r.vs) is examined by introducing fractional calculus. Two very remarkable results are o…

Characteristic function (probability theory)FOS: Physical sciencesAerospace EngineeringMathematics - Statistics TheoryOcean EngineeringProbability density functionComplex order momentStatistics Theory (math.ST)Fractional calculusymbols.namesakeIngenieurwissenschaftenFOS: MathematicsTaylor seriesApplied mathematicsCharacteristic function serieMathematical PhysicsCivil and Structural EngineeringMathematicsGeneralized Taylor serieMechanical EngineeringStatistical and Nonlinear PhysicsProbability and statisticsMathematical Physics (math-ph)Condensed Matter PhysicsFractional calculusFourier transformNuclear Energy and EngineeringPhysics - Data Analysis Statistics and ProbabilitysymbolsFractional calculus; Generalized Taylor series; Complex order moments; Fractional moments; Characteristic function series; Probability density function seriesddc:620Series expansionFractional momentProbability density function seriesSettore ICAR/08 - Scienza Delle CostruzioniRandom variableData Analysis Statistics and Probability (physics.data-an)
researchProduct