Search results for "Fractional calculus"
showing 10 items of 128 documents
Multiple Solutions for Fractional Boundary Value Problems
2018
Variational methods and critical point theorems are used to discuss existence and multiplicity of solutions for fractional boundary value problem where Riemann–Liouville fractional derivatives and Caputo fractional derivatives are used. Some conditions to determinate nonnegative solutions are presented. An example is given to illustrate our results.
Vertical versus horizontal Sobolev spaces
2020
Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev sp…
Modelling infiltration by means of a nonlinear fractional diffusion model
2006
The classical Richards equation describes infiltration into porous soil as a nonlinear diffusion process. Recent experiments have suggested that this process exhibits anomalous scaling behaviour. These observations suggest generalizing the classical Richards equation by introducing fractional time derivatives. The resulting fractional Richards equation with appropriate initial and boundary values is solved numerically in this paper. The numerical code is tested against analytical solutions in the linear case. Saturation profiles are calculated for the fully nonlinear fractional Richards equation. Isochrones and isosaturation curves are given. The cumulative moisture intake is found as a fun…
Suitable domains to define fractional integrals of Weyl via fractional powers of operators
2011
Fractional-order poromechanics for a fully saturated biological tissue: Biomechanics of meniscus
2023
Biomechanics of biological fibrous tissues as the meniscus are strongly influenced by past histories of strains involving the so-called material hereditariness. In this paper, a three-axial model of linear hereditariness that makes use of fractional-order calculus is used to describe the constitutive behavior of the tissue. Fluid flow across meniscus' pores is modeled in this paper with Darcy relation yielding a novel model of fractional-order poromechanics, describing the evolution of the diffusion phenomenon in the meniscus. A numerical application involving an 1D confined compression test is reported to show the effect of the material hereditariness on the pressure drop evolution.
Power-Laws hereditariness of biomimetic ceramics for cranioplasty neurosurgery
2019
Abstract We discuss the hereditary behavior of hydroxyapatite-based composites used for cranioplasty surgery in the context of material isotropy. We classify mixtures of collagen and hydroxiapatite composites as biomimetic ceramic composites with hereditary properties modeled by fractional-order calculus. We assume isotropy of the biomimetic ceramic is assumed and provide thermodynamic of restrictions for the material parameters. We exploit the proposed formulation of the fractional-order isotropic hereditariness further by means of a novel mechanical hierarchy corresponding exactly to the three-dimensional fractional-order constitutive model introduced.
Variational Aspects of the Physically-Based Approach to 3D Non-Local Continuum Mechanics
2010
This paper deals with the generalization to three-dimensional elasticity of the physically-based approach to non-local mechanics, recently proposed by the authors in one-dimensional case. The proposed model assumes that the equilibrium of a volume element is attained by contact forces between adjacent elements and by long-range central forces exerted by non-adjacent elements. Specifically, the long-range forces are modeled as central body forces depending on the relative displacements between the centroids of the volume elements, measured along the line connecting the centroids. Furthermore, the long-range forces are assumed to be proportional to a proper, material-dependent, distance-decay…
A generalized model of elastic foundation based on long-range interactions: Integral and fractional model
2009
The common models of elastic foundations are provided by supposing that they are composed by elastic columns with some interactions between them, such as contact forces that yield a differential equation involving gradients of the displacement field. In this paper, a new model of elastic foundation is proposed introducing into the constitutive equation of the foundation body forces depending on the relative vertical displacements and on a distance-decaying function ruling the amount of interactions. Different choices of the distance-decaying function correspond to different kind of interactions and foundation behavior. The use of an exponential distance-decaying function yields an integro-d…
Threefold Introduction to Fractional Derivatives
2008
On the use of fractional calculus for the probabilistic characterization of random variables
2009
In this paper, the classical problem of the probabilistic characterization of a random variable is re-examined. A random variable is usually described by the probability density function (PDF) or by its Fourier transform, namely the characteristic function (CF). The CF can be further expressed by a Taylor series involving the moments of the random variable. However, in some circumstances, the moments do not exist and the Taylor expansion of the CF is useless. This happens for example in the case of $\alpha$--stable random variables. Here, the problem of representing the CF or the PDF of random variables (r.vs) is examined by introducing fractional calculus. Two very remarkable results are o…